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This study aims to provide insights into the electrochemical transport and interfacial phenomena in hybrid pseudocapacitors under
galvanostatic cycling. Pseudocapacitors are promising electrical energy storage devices for applications requiring large power density.
They also involve complex, coupled, and multiscale physical phenomena that are difficult to probe experimentally. The present study
performed detailed numerical simulations for a hybrid pseudocapacitor with planar electrodes and binary, asymmetric electrolyte
under various cycling conditions, based on a first-principles continuum model accounting simultaneously for charge storage by electric
double layer (EDL) formation and by faradaic reactions with intercalation. Two asymptotic regimes were identified corresponding to
(i) dominant faradaic charge storage at low current and low frequency or (ii) dominant EDL charge storage at high current and high
frequency. Analytical expressions for the intercalated ion concentration and surface overpotential were derived for both asymptotic
regimes. Features of typical experimentally measured cell potential were physically interpreted. These insights could guide the
optimization of hybrid pseudocapacitors.
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Electrochemical capacitors (ECs) are promising electrical energy
storage devices for applications requiring large power density, rapid
response, and/or long cycle life.1–3 They can be divided into two cat-
egories, namely electric double layer capacitors (EDLCs) and pseu-
docapacitors. Both types of devices consist of two porous electrodes
on either side of a separator impregnated with electrolyte. EDLCs
store electric charge within the electric double layer (EDL) consisting
of a layer of electronic charge at the surface of the electrode and an
oppositely charged layer of ions in the electrolyte.1,4 Pseudocapaci-
tors combine the energy storage mechanisms used in batteries with
those used in EDLCs by storing electric charge chemically via redox
reactions and electrostatically within the EDL.1,4,5 The electrical per-
formance of pseudocapacitors closely resembles that of EDLCs rather
than that of batteries despite their use of faradaic charge storage.1,5,6 In
fact, an ideal battery operates at a constant cell potential independent
of its state of charge (SOC), whereas the cell potential of an EDLC or
a pseudocapacitor varies continuously with its SOC.3 Finally, hybrid
or asymmetric pseudocapacitors can be designed by pairing a redox-
active or pseudocapacitive electrode (e.g., TiO2, MnO2, Nb2O5) with
an EDLC-type electrode made of carbon.3 In general, electrochemical
capacitors exhibit electrical performance between that of batteries and
that of dielectric capacitors.1–3 They typically have larger power den-
sities, cycle life, and cycle efficiencies than batteries as well as much
larger energy densities than dielectric capacitors.2 Among electro-
chemical capacitors, pseudocapacitors yield larger capacitances and
energy densities than EDLCs because they combine faradaic and EDL
charge storage and can accommodate more charge per unit electrode
surface area and volume than EDL charge storage alone.3,5–7

Pseudocapacitors involve complex, coupled, and multiscale elec-
trochemical transport and interfacial phenomena that are difficult to
monitor experimentally. For example, it is difficult to discriminate
between the fraction of charge storage achieved from faradaic reac-
tions and that from EDL formation. Experimentalists have attempted
to differentiate between surface-controlled processes, such as EDL
capacitance, and diffusion-controlled processes, such as battery-like
faradaic charge storage with intercalation. To do so, they analyzed
the relationship between the amount of charge stored (called the “ca-
pacity” in C or in mAh) or the current and the scan rate in cyclic
voltammetry (CV) measurements.7–9 However, this analysis was de-
rived from the behavior associated with EDL and faradaic charge
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storage occurring independently of each other.6 In practice, EDL for-
mation and redox reactions can take place simultaneously, making it
difficult to interpret experimental results for pseudocapacitors. Note
also that, to the best of our knowledge, this analysis method is specific
to CV and cannot be used for galvanostatic cycling.

The present study aims to investigate and to physically interpret
the detailed electrochemical transport behavior in hybrid pseudoca-
pacitors under galvanostatic cycling. Particular attention was paid
to determining the respective contributions of EDL formation and
faradaic reactions to energy storage under various cycling conditions
and to identifying the physical phenomena limiting the faradaic charge
storage. These insights were used to physically interpret features of
experimentally measured cell potentials, and could help guide opti-
mization of hybrid pseudocapacitor designs, materials, and operating
conditions. To accomplish these objectives, detailed numerical sim-
ulations were performed for a hybrid pseudocapacitor using a first-
principles continuum model predicting the spatiotemporal evolution
of the electric potential and concentrations.10

Background

Capacitance.— The capacitance of an electrochemical capacitor
characterizes the amount of electric charge qs (in C) stored from
the external circuit as a function of the cell potential ψs (in V).
The areal capacitance Cs is defined as the capacitance per unit elec-
trode/electrolyte interfacial area, expressed in F m−2. The differential
Cs,di f f and the integral Cs,int areal capacitances can be determined
by galvanostatic cycling at constant current density ± js = dqs/dt
according to Refs. 1,11

Cs,di f f = dqs

dψs
= js

|dψs/dt | and Cs,int = qs

ψs
= js tc/2

ψmax − ψmin

[1]

where ψmax and ψmin are the upper and lower limits of ψs(t), and tc

is the cycle period (in s).

Experimental studies of pseudocapacitive materials.— Various
transition metal oxides have shown promising pseudocapacitive
performance.6,12 For example, recent studies have demonstrated
large capacitance associated with Li+ intercalation into crystalline
Nb2O5.7,8,12–14 In hybrid Nb2O5/activated carbon pseudocapacitors,
the Nb2O5 electrode typically serves as the negative electrode relative
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to the positive activated carbon electrode.8,12,14 This corresponds to
Li+ intercalation in the Nb2O5 electrode during charging and deinter-
calation during discharging. It is interesting to note that the synthesis
of Nb2O5 described in Ref. 13 resulted in Nb2O5 electrodes with no
initial Li and minimal contaminants, based on X-ray photoelectron
spectroscopy data.13

Pseudocapacitance has also been demonstrated with MnO2 in-
volved in reversible redox reactions with H+, K+, and Li+.15–19 In
contrast to Nb2O5, MnO2 has typically been used as the positive
electrode in hybrid pseudocapacitors.15 This corresponds to charging
the device by deintercalation of the cation. Then, the pseudocapaci-
tive electrode must contain a significant concentration of the reduced
cation at the beginning of the cycle. Indeed, several pseudocapaci-
tor studies, featuring MnO2 electrodes reacting with K+, synthesized
pseudocapacitive MnO2 electrodes by reduction of KMnO4,16–18 re-
sulting in the initial electrode composition K0.02MnO2H0.33.16 This
corresponded to an initial concentration of K in the pseudocapaci-
tive electrode of around 1 mol L−1. Similarly, a study considering
pseudocapacitors with Li+ intercalation into MnO2 synthesized the
pseudocapacitive electrodes by reacting MnO2 with Li2CO3 to obtain
the initial composition Li0.5MnO2,19 i.e., an initial Li concentration
around 30 mol L−1.

For experiments under galvanostatic cycling, the cell potential
ψs(t) is typically reported as a function of time. EC cell potentials are
typically computed as the potential of the electrode giving up elec-
trons to the external circuit during charging relative to that receiving
electrons. Thus, the cell potential ψs(t) increases during charging and
decreases during discharging. Figure 1 shows some typical examples
of cell potential ψs(t) as a function of time for hybrid pseudocapac-
itors featuring (a) a Nb2O5 negative electrode reacting with Li+12 or
(b) a MnO2 positive electrode reacting with K+.20 Figure 1a indicates
that, for hybrid pseudocapacitors with Nb2O5, the cell potential ψs(t)
increased rapidly at the beginning of the charging step.9,12,21 Then,
the rate of change |dψs/dt | abruptly decreased, resulting in a distinct
“kink” in the potential evolution. The slope |dψs/dt | also increased
toward the end of the cycle, although it was not as large as at the begin-
ning of the cycle. The cell potential ψs varied approximately linearly
for the rest of the cycle, except for a very brief period of large slope
|dψs/dt | immediately after the charging/discharging transition.9,12,21

Figure 1a also shows experimentally measured potential drops be-
tween each electrode and a reference electrode, denoted as �ψP (t)
and �ψC (t) for the pseudocapacitive and carbon electrodes, respec-
tively, and such that ψs(t) = �ψC (t) − �ψP (t). It indicates that
�ψC (t) for the carbon electrode varied linearly and that the variation
of |dψs/dt | was associated with the pseudocapacitive electrode. Note
that the range of �ψP (t) and of �ψC (t), and thus the integral capac-
itances of the individual electrodes, were of the same order of magni-
tude. This can be attributed to the fact that the carbon electrode’s mass
loading was 4.7 times that of the Nb2O5 electrode, ensuring that both
electrodes had the same capacitance at a particular current density.12

Indeed, it is common for hybrid pseudocapacitors to have electrodes
with different loadings in order to match their capacitances.9,18–22 Fig-
ure 1b indicates that, for hybrid pseudocapacitors featuring MnO2

positive electrodes, ψs(t) = �ψP (t) − �ψC (t) varied approximately
linearly through most of the cycle. There was a slightly larger slope
|dψs/dt | immediately after the charging/discharging transition. Fi-
nally, pseudocapacitors and EDLCs with large electrical resistance
and/or cycled at large currents also featured IR drops corresponding
to instantaneous jumps in ψs at the transitions between charging and
discharging steps and given by Ohm’s law. The present study aims to
numerically reproduce these typical experimental curves in order to
interpret their features.

Electric double layer structure.— Figure 2a illustrates the elec-
tric double layer (EDL) structure of a binary and asymmetric elec-
trolyte near a planar pseudocapacitive electrode according to the Stern
model.23,24 The EDL is the region close to the electrode/electrolyte
interface with a non-zero space charge density, whereas the bulk elec-
trolyte remains electrically neutral. The net ionic charge in the EDL

Figure 1. Characteristic examples of the experimental (a) potential drops be-
tween each electrode and a reference electrode, �ψP (t) for the pseudocapaci-
tive electrode and �ψC (t) for the carbon electrode as well as the cell potential
ψs (t) = �ψC (t) − �ψP (t) for a hybrid pseudocapacitor featuring Nb2O5
reacting with Li+12 and (b) cell potential ψs (t) = �ψP (t)−�ψC (t) for a hy-
brid pseudocapacitor featuring a positive MnO2 electrode reacting with K+20

as functions of time t .

per unit electrode/electrolyte interfacial area (in C m−2) is equal and
opposite to the net electronic surface charge density in the electrode to
maintain overall electroneutrality of the interfacial region.4,23–25 The
electrolyte can be divided into the Stern and the diffuse layers. The
Stern layer is the compact layer adjacent to the electrode surface and
containing no free charge.23,24 The Stern/diffuse layer interface marks
the closest distance of approach for a solvated ion.25 Within the diffuse
layer, ions are mobile under the competing influences of electrostatic
forces, diffusion, and steric repulsion.23,24,26

Models of electrochemical capacitors.— Various models have
been proposed for the electrochemical behavior of pseudocapacitors.
Several studies have employed equivalent RC circuit models com-
posed of ideal resistors and capacitors.27–31 The values of resistances
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Figure 2. Illustration of (a) the electric double layer
structure of a binary and asymmetric electrolyte with
redox reactions near a planar electrode and (b) the
simulated hybrid pseudocapacitor with planar elec-
trodes, along with the associated coordinate system.

and capacitances used in such models were fitted from experimental
data. RC circuit models can be used for control purposes but, unfor-
tunately, provide little insight into the physical phenomena governing
pseudocapacitor operation.32 In addition, many were developed un-
der the assumption of uniform electrolyte concentration and cannot
adequately account for EDL formation.33–35

Other proposed models for pseudocapacitors solved the Poisson
equation governing local electric potential,10,36–41 sometimes coupled
with the mass transport equation governing the ion concentrations
in the electrolyte.10,37,38 Most of these models considered porous
electrodes as homogeneous composites with some effective elec-
trical conductivity36–41 and effective ion diffusion coefficients.37,38

They were used to investigate the effects of pseudocapacitive elec-
trode morphology,36,37,42 exchange current density,39,40 and EDL areal
capacitance40 on the temporal evolution of the cell potential dur-
ing discharging as well as the energy and power densities under
galvanostatic operation. Some studies also focused on tool devel-
opment for simulating stacks of many pseudocapacitor cells with
relatively low computational cost38 or for retrieving cell properties
such as the electrical conductivity of the electrode or electrolyte, the
EDL capacitance, and/or the exchange current density from exper-
imental measurements.40 Such models are valuable for simulating
entire devices with porous electrodes of realistic dimensions. How-
ever, they often accounted for the EDL formation only via a con-
stant EDL capacitance36–41 taken from experimental measurements
for carbon36,37,41 or used as a fitting parameter.38 They also typi-
cally assumed that the ion concentrations in the electrolyte were
uniform,36,39–42 treated ions as point charges,37,38 and/or accounted

only for ion diffusion while ignoring electromigration.37 In other
words, the two charge storage mechanisms, i.e., EDL formation and
redox reactions, were entirely decoupled. Recently, we presented a
continuum model accounting simultaneously for coupled EDL for-
mation and faradaic reactions and for finite ion size.10 This model was
used to physically interpret cyclic voltammetry (CV) measurements
for hybrid pseudocapacitors with planar electrodes and binary and
asymmetric electrolyte.10 The study established that CV curves fea-
tured a faradaic regime dominated by redox reactions and a capacitive
regime dominated by EDL formation. It also clarified the physical
interpretation of the so-called “b-value” observed experimentally in
the power law relating current and scan rate.10

Finally, molecular dynamics (MD) and density functional theory
(DFT) models, accounting for individual atoms and their interactions,
have also been developed for pseudocapacitors.43–48 They have been
used to predict the energy barriers associated with surface adsorption
and bulk intercalation43–46 as well as the charge distribution,44 the
diffusion pathways for intercalated ions,43,48 and the crystal structure
of the pseudocapacitive electrode material.43,44,46,47 Unfortunately, the
large computational cost limits MD simulations to time and length
scales on the order of 10 nm and 10 μs,49,50 respectively. These
are much smaller than realistic device dimensions or time scales for
pseudocapacitor charging and discharging under galvanostatic cy-
cling, making MD models impractical for simulating realistic device
operation.

The present study investigates and physically interprets
the detailed electrochemical transport phenomena in a hybrid
pseudocapacitor under galvanostatic cycling. It focuses in particular
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on the allocation of stored charge between the EDLs and pseudocapac-
itive ion intercalation under various operating conditions. To this end,
detailed numerical simulations were performed for a planar hybrid
pseudocapacitor with binary and asymmetric electrolyte using realis-
tic current densities and potential windows based on a first-principles
continuum model.10 The EDL capacitance was predicted from first
principles and the faradaic current density was computed based on
the local concentrations and surface overpotential at the Stern/diffuse
layer interface. The model predicts the spatiotemporal evolutions of
the electric potential, the ion concentrations within the EDLs and bulk
electrolyte, and of the concentration of intercalated cations in the pseu-
docapacitive electrode. It bridges the gap between existing continuum
models simulating entire porous electrodes and treating ions as point
charges and MD models simulating nanoscale regions. In contrast to
most existing continuum models,36–42 it simultaneously accounts for
the coupling between the EDL formation and the faradaic reaction.

Analysis

Schematic and assumptions.— Figure 2b illustrates the one-
dimensional (1D) hybrid pseudocapacitor considered in the present
study and the associated coordinate system. The simulated device
consisted of two current collectors supporting planar electrodes sep-
arated by a binary and asymmetric electrolyte with inter-electrode
distance 2L . The pseudocapacitive electrode of thickness L P con-
sisted of a transition metal oxide MpOq reacting chemically with Li+

according to the following reversible redox reaction

mLi+ + MpOq + me− ⇀↽ LimMpOq [2]

where m is the number of Li+ ions intercalated per molecule of the
metal oxide MpOq . Its maximum value depends on the metal oxide.
For example, Nb2O5 reacting with Li+ forms Li2Nb2O5 with m = 2
in its fully-lithiated state.12 The heterogeneous reaction occurring at
the pseudocapacitive electrode/electrolyte interface transferred Li+

ions from the electrolyte into the MpOq matrix.23–25 Subsequently, the
intercalated Li+ migrated farther into the pseudocapacitive electrode,
accompanied by reduction of the transition metal cations.12,25. On the
other hand, the planar carbon electrode of thickness LC did not react
chemically with the electrolyte. Instead, it stored charge only in the
EDL forming near its surface.

To make the problem mathematically tractable, the following as-
sumptions were made: (1) The heterogeneous redox reaction occurred
within the Stern layer near the pseudocapacitive electrode. This as-
sumption is commonly used in models of batteries and electrochemical
capacitors, since free electrons and free Li+ ions are assumed to be
confined to the electrodes and to the diffuse layer, respectively.23 (2)
Bulk motion of the electrolyte was negligible. (3) Transport of the
intercalated species in the pseudocapacitive electrode was treated as
a diffusion process. (4) No phase transition occurred in the pseudoca-
pacitive material. This was consistent with experimental observations
for Nb2O5

12. (5) The physicochemical properties of the electrodes and
the electrolyte were assumed to be constant. In practice, the electrical
conductivity σP and the Li+ diffusion coefficient D1,P in the pseudo-
capacitive electrode may change with the concentration of intercalated
Li+. Similarly, the electrolyte transport properties may change with
the local electric field and/or ion concentrations. However, to the best
of our knowledge, no quantitative models or experimental measure-
ments for σP or D1,P of metal oxides as a function of intercalated
Li+ concentration exist. (6) The Stern layer thickness H was identical
at both electrodes and equal to half the effective diameter ai,E of the
largest ion species i , i.e., H = max(ai,E/2). (7) Non-electrostatic ion
adsorption was negligible. In fact, previous simulations of EDLCs
using this assumption51,52 agreed well with experimental data. (8)
The potential drop across the current collectors was negligible, so
that only the electrodes and the electrolyte were simulated. (9) The
cell temperature was uniform and constant, and heat generation was
ignored.

Governing equations.—In the electrodes.— The local electric po-
tential ψ(r, t) in each electrode obeys Poisson’s equation given by53

∇ · (σP∇ψ) = 0 in the pseudocapacitive electrode

and ∇ · (σC∇ψ) = 0 in the carbon electrode [3]

where σP and σC are the electrical conductivities of the pseudocapac-
itive and carbon electrode materials, respectively. The spatiotemporal
evolution of the local concentration c1,P (r, t) of intercalated lithium
ions in the pseudocapacitive electrode is governed by the mass diffu-
sion equation written as54–56

∂c1,P

∂t
= −∇ · N1,P with N1,P = −D1,P∇c1,P . [4]

Here, N1,P is the molar flux vector given by Fick’s law (in mol m−2s−1)
and D1,P is the diffusion coefficient (in m2s−1) of intercalated Li+

inside the pseudocapacitive material. Note that lithium intercalation
did not take place in the carbon electrode assumed to be chemically
inert.
In the electrolyte.—The generalized modified Poisson-Nernst-Planck
(GMPNP) model57 can be used to predict the local electric potential
ψ(r, t) and ion concentrations ci,E (r, t) of ion species i in the elec-
trolyte. It accounts for finite ion size and is applicable to multi-species
and asymmetric electrolytes, i.e., electrolytes with more than two ion
species and/or having different valencies zi,E , effective ion diameters
ai,E , and/or diffusion coefficients Di,E .57 The electric potential ψ(r, t)
in the electrolyte is governed by Poisson’s equation expressed, for a
binary electrolyte (i = 1 or 2), as57

− ∇ · (ε0εr∇ψ) =
⎧⎨
⎩

0 in the Stern layers

F
2∑

i=1
zi,E ci,E in the diffuse layer

[5]

where ε0 = 8.854 × 10−12 F m−1 and εr are the vacuum permittiv-
ity and the relative permittivity of the electrolyte, respectively. The
Faraday constant is denoted by F = 96 485 C mol−1. The local ion
concentration ci,E (r, t) in the diffuse layer is governed by the mass
conservation equation57

∂ci,E

∂t
= −∇ · Ni,E with i = 1 or 2 [6]

where Ni,E is the molar flux (in mol m−2s−1) of ion species i in the
electrolyte expressed as57

Ni,E = −Di,E∇ci,E − Di,E zi,E Fci,E

Ru T
∇ψ

− Di,E ci,E NA

1 − NA

2∑
j=1

a3
j,E c j,E

2∑
j=1

a3
j,E∇c j,E . [7]

Here, T is the local absolute temperature (in K), NA = 6.022 ×
1023 mol−1 is the Avogadro constant, and Ru = 8.314 J K−1mol−1 is
the universal gas constant. The first and second terms on the right-hand
side of Equation 7 represent fluxes due to diffusion and electromigra-
tion, respectively, while the third term accounts for steric effects.57

In particular, the steric term prevents the ion concentration from ex-
ceeding the theoretical maximum concentration ci,E,max = 1/NAa3

i,E
corresponding to simple cubic packing of spherical ions.
The faradaic current density.—The transport processes in the pseu-
docapacitive electrode and in the electrolyte are coupled with the
faradaic reaction occurring at their interface. The faradaic current
density jF (rs, t) (in A m−2) due to the redox reaction and the in-
tercalation of lithium ions (species 1) is typically described by the
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generalized Frumkin-Butler-Volmer model,23,25,58,59 i.e.,

jF (rs, t) = jF,0(rs, t)

{
exp

[
(1 − α)z1,E Fη(rs, t)

Ru T

]

− exp

[−αz1,E Fη(rs, t)

Ru T

]}
ns [8]

where rs is the position vector for a point on the electrode/electrolyte
interface and ns is the unit normal vector to the electrode/electrolyte
interface pointing into the electrolyte. Here, α, η(rs, t), and jF,0(rs, t)
are the transfer coefficient, surface overpotential, and exchange
current density, respectively. The surface overpotential η(rs, t)
= �ψH (rs, t) − �ψeq (rs, t) (in V) represents the deviation of the
electric potential drop across the Stern layer �ψH from its value
at equilibrium �ψeq .25 Here, �ψH is defined as the difference be-
tween the potential at the pseudocapacitive electrode/electrolyte in-
terface and that at the Stern/diffuse layer interface, i.e., �ψH (rs, t)
= ψ(rs, t) − ψ(rs + Hns, t). The exchange current density jF,0 is
expressed as54,60

jF,0(rs, t) = z1,E Fk0[c1,E (rs + Hns, t)]1−α[c1,P,max − c1,P (rs, t)]α

× [c1,P (rs, t)]α [9]

where c1,P,max is the theoretical maximum concentration of interca-
lated Li+ in the pseudocapacitive electrode and k0 is the reaction rate
constant in m1+3αmol−αs−1. For the reaction considered in the present
study (Equation 2), z1,E = 1. Note, however, that Equations 8 and 9
are also applicable to reactions of anions (z1,E < 0) or larger-valency
cations (z1,E > 1). Finally, the transfer coefficient α was taken as
α = 1/2 corresponding to identical energy barriers for the forward
and backward redox reactions.23,25

The above governing equations were expressed in their general
form independent of the coordinate system or a specific cell geom-
etry. The present study of a one-dimensional (1D) hybrid pseudo-
capacitor (Figure 2b) used 1D Cartesian coordinates with the ori-
gin located at the separator centerline. Then, the pseudocapacitive
electrode/electrolyte interface was located at x = −L while the
Stern/diffuse layer interface was at x = −L + H . The pseudoca-
pacitive electrode was located at −L − L P ≤ x ≤ −L and the carbon
electrode at L ≤ x ≤ L + LC . The present study will treat all vec-
tor variables (e.g., jF , Ni,P , Ni,E ) as scalars, positive if they point in
the positive x-direction, and negative if in the negative x-direction.
In addition, because jF , jF,0, η, and �ψH were defined only at a
single point x = −L , they will be treated as functions of time only,
i.e., jF (t), jF,0(t), η(t), and �ψH (t). Note that Li+ intercalation cor-
responds to faradaic current density in the negative x-direction, i.e.,
jF < 0 mA cm−2.

Initial and boundary conditions.— The governing Equations 3 to
7 in 1D Cartesian coordinates for ψ(x, t), c1,P (x, t), and ci,E (x, t)
are first-order partial differential equations in time and second order
in space. Thus, each equation requires one initial condition and two
boundary conditions in each region where it is solved.
Initial conditions.—Initially, the potential was taken as uniform and
equal to zero across the device such that

ψ(x, 0) = 0 V. [10]

The initial ion concentrations in the diffuse layer (−L + H ≤ x ≤
L − H ) were uniform with bulk concentrations ci,E,∞ satisfying elec-
troneutrality so that

ci,E (x, 0) = ci,E,∞ with
2∑

i=1

zi,E ci,E,∞ = 0 [11]

The initial concentration of Li+ intercalated in the pseudocapacitive
electrode (−L − L P ≤ x ≤ −L) was uniform and equal to c1,P,0, i.e.,

c1,P (x, 0) = c1,P,0 [12]

Note that an initial concentration c1,P,0 of identically zero resulted in
zero faradaic current density jF (Equation 8) at all subsequent times.
Thus, initially “empty” electrodes charged by intercalation were sim-
ulated using an arbitrary small, but non-zero, value of the initial Li+

concentration c1,P,0. It was verified that the predictions for ψ(x, t),
c1,P (x, t), and ci,E (x, t) under oscillatory steady state were not sensi-
tive to the choice of c1,P,0.
Boundary conditions.—Under galvanostatic cycling, the current den-
sity jim(t) = ± js was imposed at the interface between the current
collector and the pseudocapacitive electrode located at x = −L − L P

according to Ohm’s law and expressed as25

− σP
∂ψ

∂x
(−L − L P , t) = jim(t). [13]

In the present study, the amount of charge �qs = js tc/2 stored during
the charging step and retrieved during the discharging step was kept
identical for all cycles and charging corresponded to Li+ intercalation.
The imposed current density jim(t) alternated between charging and
discharging as a square wave of fixed cycle period tc expressed as

jim(t) =
{

− js for charging (nc − 1)tc ≤ t < (nc − 1/2)tc

js for discharging (nc − 1/2)tc ≤ t < nctc
[14]

where nc = 1, 2, 3... is the cycle number. Note that ECs are often
experimentally cycled over a fixed potential window �ψs rather than
with fixed �qs . The fixed-charge method was used here to facilitate
the physical interpretation and the comparison with previous EDLC
simulations.61,62

Charge conservation required the electronic current density in
the pseudocapacitive electrode at the electrode/electrolyte interface
to equal the sum of the faradaic current density jF (t), given by
Equation 8, and the capacitive current density jC (t) at the Stern/diffuse
layer interface such that

− σP
∂ψ

∂x
(−L , t) = jF (t) + jC (t). [15]

The capacitive current density jC (t) arises due to the formation and
dissolution of the EDL near the pseudocapacitive electrode. It is de-
fined as the displacement current density within the Stern layer at the
pseudocapacitive electrode. It was uniform across the Stern layer due
to the uniform potential gradient and given by

jC (t) = −ε0εr
∂2ψ

∂x∂t
(−L + H, t). [16]

The electric potential gradient was uniform across the Stern layers
near each electrode due to the lack of free charge (Equation 5). The
potential ψ(x, t) in the Stern layers was not explicitly simulated.
Instead, it was accounted for by the boundary conditions.35,63 At the
Stern/diffuse layer interface near the pseudocapacitive electrode, it
was expressed as33,52

∂ψ

∂x
(−L + H, t) = ψ(−L + H, t) − ψ(−L , t)

H
. [17]

Similarly, at the Stern/diffuse layer interface near the carbon electrode,
the potential satisfied

∂ψ

∂x
(L − H, t) = ψ(L , t) − ψ(L − H, t)

H
. [18]

At the carbon electrode/electrolyte interface, located at x = L , the
electronic current density equaled the displacement current density at
the Stern/diffuse layer interface such that

− σC
∂ψ

∂x
(L , t) = −ε0εr

∂2ψ

∂x∂t
(L − H, t). [19]

Finally, the interface between the carbon electrode and the current
collector was electrically grounded such that

ψ(L + LC , t) = 0 V. [20]

Note that the choice of reference potential is arbitrary. It did not affect
the computed currents, ion concentrations, or cell potential ψs(t).
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Moreover, lithium ions could not intercalate into the current col-
lector so that

N1,P (−L − L P , t) = 0 mol m−2s−1. [21]

The molar fluxes of Li+ in the electrolyte and intercalated Li+ entering
and exiting the Stern layer near the pseudocapacitive electrode were
proportional to the faradaic current density jF (t) (Equation 8), while
the anion mass flux vanished so that

N1,P (−L , t) = N1,E (−L + H, t) = jF (t)

z1,E F
and

[22]
N2,E (−L + H, t) = 0 mol m−2s−1.

In addition, both ion mass fluxes vanished at the Stern/diffuse layer
interface near the carbon electrode as no ion intercalation occurred,
i.e.,

Ni,E (L − H, t) = 0 mol m−2s−1 for i = 1 and 2. [23]

Constitutive relationships.— The present study uses arbitrary yet
realistic material properties for the pseudocapacitive material. Its
electrical conductivity σP was taken as σP = 7 × 10−2 S m−1,
within the range typical of metal oxides used in pseudocapacitors.64

As previously mentioned, the transfer coefficient was taken as
α = 1/2 corresponding to identical energy barriers for the reac-
tion in both directions. For transition metal oxides, the reaction
rate coefficient k0 for Li+ intercalation typically ranged from about
10−11 to 10−8 m5/2mol−1/2s−160,65–67 and the diffusion coefficient
D1,P from 10−18 to 10−10 m2s−1.66,68 Here, they were taken as
k0 = 5 × 10−9 m5/2mol−1/2s−1 and D1,P = 10−10 m2s−1 to pro-
vide favorable conditions for faradaic charge storage. The maximum
concentration of intercalated Li+ in the pseudocapacitive electrode
was approximated as c1,P,max = 2ρP/MP ≈ 32.9 mol L−1 where
MP = 279.7 g mol−1 and ρP ≈ 4.6 g cm−3 correspond to the molecu-
lar mass and density of fully-intercalated Li2Nb2O5, respectively. The
initial Li+ concentration in the electrode was c1,P,0 = 10−6 mol L−1.
Finally, the electrical conductivity of the simulated carbon electrode
was taken as σC = 100 S m−1.69–71

Experimental studies31,72 have shown that the equilibrium potential
drop �ψeq for pseudocapacitive electrodes may vary with the state of
charge and thus change over time during operation. Ref. 31 expressed
�ψeq of MnO2 as a linear function of the oxidation state of the
pseudocapacitive material according to

�ψeq = A

(
Osmax − c1,P

c1,P,max

)
+ B [24]

where Osmax = 4 was the theoretical maximum oxidation state for
MnO2 and A and B were empirically fitted constants expressed in V.
The present study expresses �ψeq in slightly different form, i.e.,

�ψeq (t) = �ψeq,0 − Seq

(
c1,P (−L , t) − c1,P,0

c1,P,max

)
. [25]

where �ψeq,0 is the initial value of �ψeq corresponding to
c1,P (−L , t) = c1,P,0. Equations 24 and 25 are equivalent with Seq = A
and �ψeq,0 = B + A(Osmax − c1,P,0/c1,P,max ). The present study
assumed that the cell started from an equilibrium state such that
�ψeq,0 = 0 V, consistent with Equation 10. Note that �ψeq,0 �= 0 V
could be simulated with appropriate initial conditions, e.g., non-
uniform electric potential and ion concentrations corresponding an
equilibrium state such that �ψH (0) = �ψeq,0, but this is beyond
the scope of the present investigation. Here, we primarily consid-
ered the ideal faradaic behavior Seq = 0 V when �ψeq is constant.
The effects of variable �ψeq were investigated using Seq = 1 V and
Seq = 10.5 V based on experimentally measured values for thin-
film and thick porous MnO2 electrodes, respectively.31 Equation 25
indicates that, for Seq > 0 V as measured experimentally for MnO2,
�ψeq decreases with increasing c1,P . This makes intuitive sense, since
it results in further cation intercalation becoming increasingly “diffi-
cult” with increasing c1,P (i.e., the potential drop �ψH must be more

negative to achieve the same ηF < 0 V than for smaller c1,P ) while
deintercalation becomes “easier” (i.e., ηF > 0 V can be achieved with
smaller �ψH ).

The binary and asymmetric electrolyte simulated corresponded to
1 mol L−1 LiClO4 in propylene carbonate (PC) solvent. The relative
permittivity εr = 66.1 was taken as constant and equal to that of PC
at zero electric field.73 The solvated ion diameters of Li+ and ClO−

4
were taken as a1,E = 0.67 nm and a2,E = 1.0 nm, respectively.73,74

Their diffusion coefficients in PC were D1,E = 2.6×10−10 m2s−1 and
D2,E = 3.3×10−10 m2s−1, respectively.74,75 Their bulk concentrations
equaled c1,E,∞ = c2,E,∞ = 1 mol L−1.

The pseudocapacitive and carbon electrodes had the same thick-
ness L P = LC = 5 nm while the inter-electrode half-width was much
larger and equal to L = 1 μm. The use of thin electrodes facili-
tated comparison to analytical calculations in the limiting case when
the intercalated Li+ concentration c1,P (x, t) remained uniform in the
pseudocapacitive electrode. The temperature was taken as uniform,
constant, and equal to T = 298 K. The cell was cycled galvanostati-
cally at various current densities js and cycle periods tc such that the
stored charge density �qs = js tc/2 = 0.3 C m−2 added to the cell
during charging and removed during discharging was the same for all
cases. This charge density was comparable to the charge density per
unit electrode/electrolyte interfacial area for experimentally cycled
EDLCs and hybrid pseudocapacitors reported in the literature.76,77

Method of solution.— The 1D governing Equations 3 to 7 and the
associated initial and boundary conditions were solved numerically
using finite element methods. Numerical convergence was assessed
based on the predicted potential ψ(x, t) and concentrations c1,E (x, t),
c2,E (x, t), and c1,P (x, t). The mesh element size was the smallest
at the Stern/diffuse layer interfaces due to the large potential and
concentration gradients in this region and gradually increased away
from these boundaries. The mesh was refined by reducing the element
size at the Stern/diffuse layer interface and by reducing the maximum
element growth rate. The time step was controlled by the relative and
absolute time tolerances.78 The numerical solution was considered
converged when halving (i) the element size at the Stern/diffuse layer
interface, (ii) the maximum element growth rate, and (iii) both the
relative and absolute tolerances resulted in less than 0.5% maximum
relative difference in ψ, c1,E , c2,E , and c1,P . At each time step, the
estimated local error between the solutions at the previous and the
current time steps was compared with the time tolerances. The time
step was then adjusted until the convergence criterion was satisfied, as
described in Ref. 78. This enabled the use of small time steps during
periods when the different variables of interest changed rapidly while
using a larger time step for the rest of the simulation.

Finally, several cycles were simulated and an oscillatory steady
state in ψ(x, t), c1,E (x, t), c2,E (x, t), and c1,P (x, t) was considered to
be reached when the maximum relative error between the value of
each variable at time t and its value at time t − tc was less than 1%.
For small current densities js � 8 mA cm−2, these conditions were
typically met by the third cycle. The number of cycles required to reach
oscillatory steady state increased with increasing current density js .
For example, at current density js = 256 mA cm−2, almost 80 cycles
were required to reach oscillatory steady state.

Analytical expressions for limiting cases.— The preceding model
accounts simultaneously for two contributions to charge storage: (i)
faradaic charge storage associated with the faradaic current density
jF (t) and (ii) EDL charge storage associated with the capacitive cur-
rent density jC (t). The complex interactions between the faradaic
reaction and the EDL formation can make physical interpretation of
the model predictions difficult. The latter can be facilitated by sim-
pler analytical expressions for certain variables such as c1,P and η as
functions of time derived in the limiting cases when one of the stor-
age mechanisms dominates. This section analyzes these two limiting
cases in more detail. Here, the intercalated Li+ concentration c1,P was
assumed to be uniform in the pseudocapacitive electrode due to its
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small thickness. Note that the expressions derived for c1,P and η are
valid for charging either by intercalation or by deintercalation.
General expressions.—First, it is useful to express the intercalated
Li+ concentration c1,P and the overpotential η as functions of the
current densities jF and jC . Based on mass conservation, the uniform
intercalated Li+ concentration c1,P (x, t) at time t is the sum of the
initial concentration c1,P,0 and the net Li+ intercalated due to the
faradaic reaction per unit volume of the electrode, i.e.,

c1,P (x, t) = c1,P,0 + AP

z1 F

t∫
0

[− jF (t)]dt. [26]

Here, AP is the pseudocapacitive electrode/electrolyte interfacial area
per unit volume of pseudocapacitive material (in m−1). It is given by
AP = 1/L P for a 1D cell with planar electrodes. The second term is
positive and c1,P increases during Li+ intercalation corresponding to
negative jF (t), as previously mentioned.

Moreover, for α = 1/2, the expression of jF (t) given by
Equations 8 and 9 can be solved for η(t) to yield

η(t) = 2
Ru T

z1,E F
sinh−1

(
jF (t)

2z1,E Fk0

√
c1,E (−L + H, t)

√
c1,P,max − c1,P (−L , t)

√
c1,P (−L , t)

)
. [27]

Alternatively, η(t) can be expressed in terms of the EDL surface charge
density qs,C (t) stored in the EDL at the pseudocapacitive electrode and
of the Stern layer capacitance C St

s = ε0εr/H as52

η(t) = �ψH (t) − �ψeq (t) = qs,C (t)

C St
s

− �ψeq (t)

= Hqs,C (t)

ε0εr
− �ψeq (t). [28]

The EDL surface charge density qs,C (t) at the pseudocapacitive elec-
trode is equal to qs,C (t) = ∫ t

0 jC (t ′)dt ′. Thus, the time rate of change of
η varies linearly with the capacitive current density jC (t) = dqs,C/dt
according to

dη

dt
(t) = jC (t)H

ε0εr
− d�ψeq (t)

dt
. [29]

Asymptotic faradaic regime.—In the faradaic regime, the faradaic
current density jF (t) carries most of the imposed current density
js so that jF (t) ≈ ± js and jC (t) ≈ 0 mA cm−2. Then, based on
Equation 26, the corresponding Li+ concentration c1,P,F (x, t) varies
linearly as a function of t with slope js AP/z1,E F and can be expressed
as

c1,P,F (t) = c1,P,0+(−1)p

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

js tc AP

z1,E F

(
t

tc
− nc + 1

)
for charging

js tc AP

z1,E F

(
nc − t

tc

)
for discharging

[30]
where p = 0 for charging by Li+ intercalation (analogous to
Nb2O5 negative electrodes) and p = 1 for charging by Li+

deintercalation (analogous to MnO2 positive electrodes). In the
faradaic regime, EDL formation near the pseudocapacitive elec-
trode is expected to be negligible, and the ion concentrations at
the Stern/diffuse layer interface to remain close to their bulk con-
centrations such that c1,E (−L + H, t) ≈ c1,E,∞ and c2,E (−L +
H, t) ≈ c2,E,∞. Then, Equation 27 for the surface overpotential ηF (t)

simplifies as

ηF (t) = 2Ru T

z1,E F
sinh−1

[
jim(t)/2z1,E Fk0√

c1,E,∞
√

c1,P,max − c1,P,F (t)
√

c1,P,F (t)

]
.

[31]

Here, the overpotential magnitude |ηF | required to drive the current
density jF (t) = ± js and predicted by Equation 31 decreases with
decreasing js , increasing reaction rate constant k0, increasing c1,E,∞,
and/or c1,P,F approaching c1,P,max/2.
Asymptotic capacitive regime.—We define the capacitive regime as
the limiting case in which the capacitive current density jC (t) carries
the entire imposed current density jim(t) such that jC (t) ≈ ± js while
the faradaic current density is negligible, i.e., jF (t) ≈ 0 mA cm−2.
Then, the Li+ concentration inside the pseudocapacitive electrode and
thus �ψeq (Equation 25) are approximately constant, i.e., c1,P (x, t) ≈
c1,P,C and �ψeq ≈ �ψeq,C . Note that the steady-state concentration
c1,P,C could differ significantly from the initial value c1,P,0 despite the
small magnitude of jF (t) when the number of cycles required to reach
oscillatory steady state is large. Then, according to Equation 29, the

overpotential ηC (t) varies linearly with time such that

dηC

dt
(t) = jim(t)H

ε0εr
= ± js H

ε0εr
. [32]

The value of ηC at the beginning of the cycle depends on the EDL
charge density qs,C (nctc − tc). For cycling with fixed �qs , the total
stored charge density from the external circuit qs(t) = qs,C (t)+qs,F (t)
is zero at the beginning of the cycle, so the EDL charge density is given
by qs,C (nctc − tc) = −qs,F (nctc − tc) = z1,E F(c1,P,C − c1,P,0)/Ap

and

ηC (nctc − tc) = H

ε0εr

z1,E F(c1,P,C − c1,P,0)

Ap
− �ψeq,C . [33]

Note that for EDLCs with no faradaic reactions,61,62 c1,P,C = c1,P,0

and η(t) returned to 0 V at the end of each cycle.

Results and Discussion

This section presents simulation results for the previously de-
scribed hybrid pseudocapacitor charged by Li+ intercalation, anal-
ogous to Nb2O5 as a negative electrode. Various current densities js
and cycle periods tc were explored for the same amount of stored
charge �qs = js tc/2 = 0.3 C m−2. First, detailed results are pre-
sented for constant equilibrium potential drop �ψeq . Then, the effect
of state-of-charge-dependent �ψeq are briefly illustrated. Finally, re-
sults for a hybrid cell charged by Li+ deintercalation with constant
equilibrium potential drop �ψeq are presented.

Current densities.— Figures 3a and 3b respectively show the nu-
merically predicted faradaic current density jF (t) (Equation 8) and
capacitive current density jC (t) (Equation 16) as functions of dimen-
sionless time t/tc for various pairs of [ js, tc] under galvanostatic cy-
cling at oscillatory steady state. For small values of js (< 4 mA cm−2),
the faradaic current density jF (t) was negative during charging, pos-
itive during discharging, and constant in magnitude during most of
the cycle. The capacitive current density jC (t) was small compared to
jF (t). On the other hand, for large values of js (> 32 mA cm−2),
the capacitive current density jC (t) was significantly larger than
jF (t) at all times. In fact, the maximum value of | jC | increased
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Figure 3. Predicted (a) faradaic current density jF (t) and (b) capacitive current density jC (t) as well as the faradaic and capacitive fractions (c) jF (t)/js and (d)
jC (t)/js of the total current density as functions of dimensionless time t/tc for different values of js and tc under galvanostatic cycling and oscillatory steady state.
Here, js and tc were chosen such that �qs = js tc/2 = 0.3 C m−2.

continuously with increasing js . By contrast, the faradaic current den-
sity jF (t) approached an asymptotic limit at large js .

Figures 3c and 3d respectively show the fractions of the imposed
current density jF (t)/js carried by the faradaic current and jC (t)/js
carried by the capacitive current as functions of dimensionless time
t/tc for various values of js and tc under galvanostatic cycling. For
small values of js , the current density was almost exclusively faradaic,
i.e., jF (t) 
 jC (t) and jF (t)/js ≈ ±1. Then, jF (t) diverged from
the imposed current density jim(t) = ± js only around the charg-
ing/discharging transitions at t/tc = nc − 1 and t/tc = nc − 0.5. Si-
multaneously, the capacitive current fraction jC (t)/js featured peaks
following these transitions so that the sum jF (t)+ jC (t) always equaled
jim(t) = ± js . The faradaic contribution jF (t)/js decreased with in-
creasing js . Indeed, for js = 256 mA cm−2, the current density
was almost entirely capacitive, i.e., jC (t) 
 jF (t) at all times and
jC (t)/js ≈ ±1.

Overall, two asymptotic regimes were evident: a faradaic regime
characterized by jF (t) ≈ jim(t) for small values of js and slow cycling
and a capacitive regime featuring jC (t) ≈ jim(t) for large values of js
and fast cycling.

Intercalated Li+ concentration in the pseudocapacitive
electrode.— Figure 4 shows the predicted concentration of interca-
lated Li+ c1,P (−L , t) at the pseudocapacitive electrode/electrolyte
interface as a function of dimensionless time t/tc for different values

Figure 4. Predicted concentration c1,P (−L , t) of intercalated Li+ in the pseu-
docapacitive electrode as a function of dimensionless time t/tc over one
cycle at oscillatory steady state for different values of js and tc such that
�qs = js tc/2 = 0.3 C m−2. The concentration was uniform throughout the
pseudocapacitive electrode.
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Figure 5. Predicted (a) cell potential ψs (t) = �ψC (t) − �ψP (t) = ψ(L + LC , t) − ψ(−L − L P , t) and (b) pseudocapacitive electrode surface overpotential
η(t) as well as the potential drops (c) �ψP (t) = ψ(−L − L P , t) − ψ(0, t) between the pseudocapacitive electrode and the bulk electrolyte and (d) �ψC (t) =
ψ(L + LC , t) − ψ(0, t) between the carbon electrode and the bulk electrolyte as functions of dimensionless time t/tc over one cycle during galvanostatic cycling
for various values of js and tc such that �qs = js tc/2 = 0.3 C m−2.

of js and tc under galvanostatic cycling. In all cases, c1,P was uni-
form throughout the electrode due to the small electrode thickness
L P = 5 nm and to the relatively large diffusion coefficient D1,P . In
fact, the penetration depth, defined as dp = √

D1,P tc, ranged from
150 nm to 2400 nm as the cycle period ranged from 0.23 ms to 60 ms.
Thus, dp was much larger than the electrode thickness L P of 5 nm. In
other words, Li+ diffusion in the electrode was fast and never limiting.

In the faradaic regime, c1,P increased almost linearly during the
charging step and decreased linearly during the discharging step. In-
deed, for js = 1 mA cm−2, the numerically predicted Li+ concen-
tration c1,P (−L , t) agreed very well with that predicted by Equa-
tion 30, derived from mass conservation considerations and assuming
jF (t) = ± js . The largest discrepancies occurred near the transition
from discharging to charging, when c1,P was small and jF (t) dif-
fered from ± js (Figure 3). In the capacitive regime, c1,P remained
approximately constant and equal to c1,P,C ≈ 0.514 mol L−1.

Electric potentials.— Figure 5 shows (a) the cell potential ψs(t)
= �ψC (t) − �ψP (t) = ψ(L + LC , t) − ψ(−L − L P , t), (b) the
surface overpotential η(t), and the potential drop between the elec-
trode/current collector interface and the electrolyte centerline (c)
�ψP (t) = ψ(−L−L P , t)−ψ(0, t) for the pseudocapacitive electrode
half-cell and (d) �ψC (t) = ψ(L + LC , t) − ψ(0, t) for the carbon
electrode half-cell as functions of dimensionless time t/tc for different
current densities js and cycle periods tc for galvanostatic cycling at
oscillatory steady state. Here, �ψP (t) and �ψC (t) are equivalent to

the electrode potentials measured relative to a reference electrode in
three-electrode measurements (plus or minus a constant), since refer-
ence electrodes are designed to have constant potential relative to the
electrolyte solution.23,25

Figure 5a indicates that ψs(t) increased throughout the charging
step and decreased during the discharging step for all cases consid-
ered. The potential window �ψs = ψmax − ψmin increased with
increasing js , corresponding to decreasing integral capacitance Cs,int

(Equation 1) as the faradaic fraction of the charge storage decreased.
In the faradaic regime, corresponding to small current density js , the
cell potential ψs returned to ψmax ≈ 0 V at the beginning and end
of the cycle when fully discharged. The temporal evolution of ψs

was asymmetric around the transition from charging to discharging at
t/tc = nc − 0.5. At the beginning of the charging step, the time rate
of change |dψs/dt | was relatively large for a short period. After this
brief period, |dψs/dt | sharply decreased, resulting in a distinct “kink”
in the ψs(t) curve. In fact, it qualitatively resembled that measured
experimentally (Figure 1a).9,12,14,21 This kink can be attributed to the
brief peak of capacitive current jC at the beginning of the charging step
(Figure 3d) and associated with relatively small differential capaci-
tance Cs,di f f and large |dψs/dt | (Equation 1). Then, Cs,di f f abruptly
increased and |dψs/dt | decreased as the faradaic current jF became
dominant (Figure 3c). In the capacitive regime, under large current
density js , the temporal evolution of ψs was linear and symmetric
around t/tc = nc − 0.5. The cell changed polarity during each cy-
cle, and ψs was equal to ψmin ≈ −0.55 V at the beginning and end
of the cycle. This non-zero cell potential for the fully discharged cell
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occurred because a significant amount of Li+ originally from the elec-
trolyte remained intercalated as Li+ in the electrode, as evidenced by
c1,P,C being significantly larger than the initial concentration c1,P,0,
i.e., c1,P,C − c1,P,0 ≈ c1,P,C = 0.514 mol L−1 (Figure 4). Then, the
electrolyte retained a net negative charge, because more ClO−

4 than
Li+ ions remained in the electrolyte, while the pseudocapacitive elec-
trode had a net positive charge of equal magnitude.

Figure 5b shows that the sign of the surface overpotential η(t)
was always the same as that of the faradaic current density jF (t),
as suggested by Equations 8 and 27. The magnitude of η increased
with increasing js . In the faradaic regime, the magnitude of η(t) was
small and varied relatively little with time. For js = 1 mA cm−2, the
numerical predictions of η(t) agreed very well with ηF (t) predicted
analytically by Equation 31 over most of the cycle. The numerical
and analytical predictions differed from one another immediately af-
ter each charging/discharging transition and at the very end of the
cycle. Then, ηF (t) increased rapidly and jC (t) was significant, as
suggested by Equation 29. Equation 31 indicates that the overpoten-
tial ηF (t) required to drive faradaic current density jF (t) = jim(t)
changed instantaneously when jim(t) changed sign at the transitions
between charging and discharging steps. However, the actual time
rate of change of η(t) was finite and related to jC (t) = jim(t) − jF (t)
by Equation 29. Thus, the capacitive current density jC (t) dominated
immediately after charging/discharging transitions until the overpo-
tential approached ηF (t), as observed in Figure 3. Similarly, ηF (t)
increased rapidly and jC was significant at the end of the cycle as
c1,P,F approached zero. In the capacitive regime, η(t) varied linearly
with t/tc with slope ± js tc H/ε0εr . Indeed, for js = 256 mA cm−2,
η(t) showed excellent agreement with ηC (t) predicted analytically by
Equations 32 and 33 with c1,P,C − c1,P,0 ≈ c1,P,C = 0.514 mol L−1

(Figure 4). Attempts were made to derive an analytical expression for
η(t) for intermediate values of js , but were unsuccessful.

Figure 5c indicates that, for the pseudocapacitive electrode, the
evolution of �ψP (t) qualitatively resembled that of the surface over-
potential η(t) (Figure 5b). In the faradaic regime, it was small, asym-
metric around the transition from charging to discharging, and varied
relatively little in magnitude over most of the cycle (see inset). As
previously mentioned, such a constant potential drop during charg-
ing or discharging is characteristic of batteries.3 Like η(t) and the
experimentally measured �ψP (t) (Figure 1a),12 the potential drop
�ψP (t) featured relatively steep slopes |d�ψP/dt | immediately fol-
lowing each charging/discharging transition and near the end of the
cycle. However, the experimental �ψP (t) featured significant slope
|d�ψP/dt | throughout the cycle, while the numerical �ψP (t) was
almost constant when jF dominated. This difference may result from
SOC-dependence of �ψeq which was neglected in the simulations
shown in Figure 5c. For the simulated cell with identical surface area
for both planar electrodes, �ψP (t) was much smaller than �ψC (t)
since the faradaic charge storage yielded a larger capacitance than
EDL charge storage. This explains why the large changes in d�ψP/dt
resulted in relatively small kinks in the cell potential ψs(t) (Figure 5a)
compared to those observed for experimental cells with oversized
porous carbon electrodes (Figure 1a). In the capacitive regime, the
temporal evolution of �ψP (t) was linear and symmetric around the
transition from charging to discharging. These distinct asymptotic be-
haviors suggest that measuring the potential of the pseudocapacitive
electrode relative to a reference electrode provides a practical way to
assess whether it is operating in the faradaic or the capacitive regime.

Figure 5d establishes that, for the carbon electrode, the evolution
of �ψC (t) was symmetric around the transition from charging to
discharging. Its variation was nearly linear, but the slope |dψs/dt | did
vary noticeably over the cycle, indicating that the EDL differential
capacitance Cs,di f f was not constant, as assumed by many existing
models.36–41 Here, �ψC (t) was also self-similar and identical for all
values of js when plotted as a function of t/tc. This implies that there
was no ion diffusion limitation in the electrolyte, even at large values
of js when jF was negligible. Thus, the changes in the cell potential
ψs(t) with increasing js were associated solely with changes on the
pseudocapacitive side of the cell. Here, the carbon electrode had zero

net charge and �ψC = 0 V at the end of each cycle with fixed �qs ,
as it exchanged charge only with the external circuit.

Ion concentrations in the electrolyte.— Figure 6 shows the pre-
dicted concentrations of (a) Li+ cations c1,E (−L + H, t) and (b) ClO−

4
anions c2,E (−L + H, t) at the Stern/diffuse layer interface near the
pseudocapacitive electrode as functions of dimensionless time t/tc for
different values of js and tc under oscillatory steady state. Similarly,
Figures 6c and 6d respectively show the predicted cation c1,E (L−H, t)
and anion c2,E (L − H, t) concentrations at the Stern/diffuse layer in-
terface near the carbon electrode. Here, ion concentrations larger than
the bulk concentrations c1,E,∞ = c2,E,∞ correspond to the presence of
an EDL.

Figures 6a and 6b indicate that EDLs formed near the pseudoca-
pacitive electrode for all js considered. However, the concentrations
of both Li+ and ClO−

4 remained closer to their bulk concentrations
c1,E,∞ = c2,E,∞ = 1 mol L−1 as js decreased. In fact, in the faradaic
regime, the deviations from the bulk concentrations did not result in a
large error in the value of ηF (t) predicted by Equation 31 and derived
by assuming c1,E (−L + H, t) ≈ c2,E (−L + H, t) ≈ c1,E,∞ = c2,E,∞.
In this regime, an EDL of Li+ formed near the pseudocapacitive
electrode during the charging step and an EDL of ClO−

4 during the
discharging step. As js increased, the formation of the Li+ EDL near
the pseudocapacitive electrode occurred later in the charging step. In
the capacitive regime, an EDL consisting of ClO−

4 formed at the be-
ginning and end of the cycle while a Li+ EDL formed briefly around
the transition from charging to discharging (around t/tc ≈ nc − 0.5).
In addition, the Li+ concentration c1,E (−L + H, t) approached zero
at the beginning and end of the cycle when �ψH was positive
and large. This resulted in a very small faradaic current density jF

(Figure 3a) as the exchange current density jF,0 vanished due to Li+

starvation (Equation 9). In both regimes, the sign of the electric field
E(−L + H, t) = �ψH (t)/H at the Stern/diffuse layer interface near
the pseudocapacitive electrode determined which ion species formed
the EDL. For �ψeq = 0 V, E(−L + H, t) always had the same
sign as the surface overpotential η(t) (Figure 5b). Positive η(t) and
E(−L + H, t) corresponded to an EDL of ClO−

4 and negative η(t) and
E(−L + H, t) to an EDL of Li+. When they were equal to zero, the
EDL vanished and both ion species were at their bulk concentrations,
i.e., c1,E (−L + H, t) = c2,E (−L + H, t) = c1,E,∞ = c2,E,∞.

Figures 6c and 6d establish that the temporal evolutions of the
ion concentrations near the carbon electrode were self-similar and
were identical when plotted as functions of t/tc for all current densi-
ties js and cycle periods tc considered. This further confirms that ion
transport in the electrolyte was not diffusion limited in the range of
js considered. In addition, the results obtained near the carbon elec-
trode resembled those observed in previous simulations of EDLCs.62

Figure 6d indicates that, during the charging step, the concentration
c2,E (L − H, t) of the anion ClO−

4 increased until it reached its max-
imum value c2,E,max , corresponding to the formation of an EDL of
ClO−

4 .

Effect of variable equilibrium potential drop �ψeq .— Figure 7
shows the numerically predicted (a) faradaic jF (t)/js and (b) ca-
pacitive jC (t)/js fractions of the total current density, (c) potential
�ψP (t) of the pseudocapacitive electrode relative to bulk electrolyte,
and (d) cell potential ψs(t) as functions of dimensionless time t/tc

for Seq equal to 0 V, 1 V, and 10.5 V. The selected cases with
[ js (mAcm−3), tc (ms)] = [2, 30] and [256, 0.23] respectively
corresponded to the faradaic and capacitive regimes previously iden-
tified for ideal faradaic behavior with Seq = 0 V (Figure 3). Fig-
ures 7a and 7b show that the evolutions of jF/js and jC/js for a
given [ js, tc] were qualitatively similar for all values of Seq consid-
ered. For js = 256 mA cm−3, the capacitive current density jC (t)
dominated (capacitive regime) and was not significantly affected by
changes in Seq . The changes in jF (t)/js and the corresponding small
changes in jC (t)/js can be attributed to the fact that the Li+ concen-
tration c1,E (−L + H, t) at the Stern/diffuse layer interface near the
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Figure 6. Predicted concentrations of (a) Li+ cation c1,E (−L + H, t) and (b) ClO−
4 anion c2,E (−L + H, t) at the Stern/diffuse layer interface near the

pseudocapacitive electrode as well as concentrations of (c) Li+ c1,E (L − H, t) and (d) ClO−
4 c2,E (L − H, t) at the Stern/diffuse layer interface near the carbon

electrode as functions of dimensionless time t/tc over one cycle at oscillatory steady state for different values of js and tc such that �qs = js tc/2 = 0.3 C m−2.

pseudocapacitive electrode increased with increasing Seq (not shown).
As a result, the Li+ starvation observed at the beginning and end
of the cycle in Figure 6 and causing very small jF (t) vanished for
Seq = 10.5 V. For js = 2 mA cm−3, the faradaic fraction of the
total current | jF (t)/js | decreased with increasing Seq . This can be at-
tributed to the fact that non-zero rate of change d�ψeq/dt resulted in
non-zero capacitive current density jC . Rearranging Equation 29 and
combining it with jim(t) = jF (t) + jC (t) yields

jC (t) = jim(t) − jF (t) = ε0εr

H

[
dη(t)

dt
+ d�ψeq (t)

dt

]
. [34]

After substitution for �ψeq based on Equations 25 and 26, jF can be
expressed as

jF (t) =
jim(t) − ε0εr

H

dη(t)

dt

1 + ε0εr Seq AP

Hc1,P,max z1,E F

. [35]

As a result, Seq > 0 V prevented the hybrid pseudocapacitor from
reaching the faradaic limit jF (t) ≈ jim(t) even when dη(t)/dt was neg-
ligible. For the cases considered in the present study and dη/dt ≈ 0,
Equation 35 predicted jF = 0.93 jim for Seq = 1 V and jF = 0.56 jim

for Seq = 10.5 V. This agrees well with the numerical predictions
shown in Figure 7a. Figure 7c shows that, for js = 2 mA cm−2,
the potential drop �ψP (t) across the pseudocapacitive electrode half-
cell decreased with increasing Seq . For Seq = 10.5 V, �ψP (t) had

a significant slope d�ψP (t)/dt throughout the cycle and qualita-
tively resembled that measured experimentally (Figure 1a). Figure 7d
shows that this resulted in the potential window �ψs increasing and
thus the integral capacitance Cs,int decreasing with increasing Seq for
js = 2 mA cm−2.

It is interesting to note that experimental measurements for MnO2

electrodes showed smaller values of Seq for thin-film electrodes than
for thick porous electrodes.31 The present results suggest that this
would cause smaller faradaic current and smaller capacitances for
thick porous electrodes compared with thin films. Indeed, smaller
capacitance for thicker electrodes has been observed experimentally.79

It is also noteworthy that the predicted jF and jC corresponding to
ideal faradaic behavior with Seq = 0 V were quite close to those for
Seq = 1 V, approximately the value measured for thin MnO2 films.31

This suggests that constant �ψeq is a reasonable first approximation
for simulating thin electrodes.

Charging by Li+ deintercalation.— As previously mentioned, for
some hybrid pseudocapacitors, such as those using MnO2 positive
electrodes, charging corresponds to deintercalation of the cation. This
can be implemented by replacing Equation 14 with

jim(t) =
{

js for charging (nc − 1)tc ≤ t < (nc − 1/2)tc

− js for discharging (nc − 1/2)tc ≤ t < nctc.
[36]

In addition, a significant initial concentration of intercalated Li+

c1,P,0 = 1 mol L−1 was used in order to accommodate the initial
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Figure 7. Predicted (a) faradaic jF (t)/js and (b) capacitive jC (t)/js fractions of the total current density, (c) potential �ψP (t) of the pseudocapacitive electrode
relative to bulk electrolyte, and (d) cell potential ψs (t) as functions of dimensionless time t/tc for Seq = 0, 1, and 10.5 V under galvanostatic cycling. The two
selected cases [ js , tc] corresponded to the faradaic and capacitive regimes identified for Seq = 0 V and satisfying �qs = js tc/2 = 0.3 C m−2.

deintercalation of Li+, as done during material synthesis of MnO2

electrodes.16,19 Here also, Seq was taken as Seq = 0 V corresponding
to ideal faradaic behavior.

Figure 8 shows (a) the faradaic jF (t)/js and (b) capacitive jC (t)/js
fractions of the imposed current as well as (c) the surface overpoten-
tial η(t) and (d) the cell potential ψs(t) = �ψP (t) − �ψC (t) for the
hybrid pseudocapacitor charged by deintercalation. Figures 8a and 8b
indicate that the previously observed faradaic and capacitive regimes
also occurred for charging by deintercalation. In addition, Figure 8c
shows that the numerically predicted overpotential η agreed well with
the analytical predictions ηF and ηC (Equations 31 to 33). Here, |ηF |
reached a maximum at the end of the charging step when c1,P,F was
minimum. Moreover, |ηC | was large and positive around the transi-
tion from charging to discharging. This resulted in Li+ starvation in
the electrolyte, i.e., c1,E (−L + H, t) ≈ 0 mol L−1 (not shown), and
jF ≈ 0 mA cm−2 at this time rather than around the transition from
discharging to charging as previously observed (Figure 3a). Figure 8d
shows that the cell potential evolution ψs(t) had similar qualitative
behavior to that observed for charging by intercalation (Figure 5a).
In the faradaic regime, it qualitatively resembled experimental mea-
surements (Figure 1b). The potential window �ψs was smaller than
that for the same values of js and tc when charging by intercalation.
Thus, charging by deintercalation, with the present planar electrodes,
resulted in a larger integral capacitance Cs,int . At the pseudocapacitive
electrode, |ηF | remained relatively small because c1,P,F remained rel-
atively large (>0.38 mol L−1). At the carbon electrode, the EDL was
formed by the smaller Li+ ions rather than ClO−

4 , leading to larger
maximum concentration c1,E,max and thus to larger EDL capacitance.62

Here also, a faradaic “kink” in ψs(t) was evident at the beginning of
both the charging and discharging steps. However, it was more promi-
nent at the beginning of the discharging step. This can be attributed to
the fact that |ηF | was maximum at the transition from charging to dis-
charging, requiring a relatively large change in η before the faradaic
current could become dominant again.

Hybrid pseudocapacitors with porous electrodes.— The present
study considered only planar electrodes while practical hybrid pseu-
docapacitors use porous electrodes. First, our simulations based on
planar electrodes qualitatively reproduced experimental cell potential
features measured on hybrid pseudocapacitors with porous electrodes.
This suggests that the model captures the key physical phenomena
occurring in realistic electrode geometries. However, accounting for
porous electrodes is necessary (i) to provide quantitative predictions
of actual hybrid pseudocapacitors and/or (ii) to investigate the ef-
fects of electrode morphology. Second, the present model could be
extended to porous electrodes using various approaches. It could be
employed to directly simulate transport in ordered three-dimensional
porous electrodes. This approach could yield valuable information
about the effect of the electrode material architecture on the elec-
trochemical transport and provide design rules. New electrodes and
hybrid pseudocapacitor devices designed using such insights may en-
able expansion of the faradaic regime to achieve larger capacitance
and energy density. However, it would be computationally very costly
and time consuming. In addition, insights and analytical expressions
obtained from the present detailed model and from planar-electrode
simulations could be used to develop volume-averaged continuum
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Figure 8. Predicted (a) the faradaic jF (t)/js and (b) capacitive jC (t)/js fractions of the imposed current as well as (c) the surface overpotential η(t) and (d) the
cell potential ψs (t) = �ψP (t) − �ψC (t) for the hybrid pseudocapacitor charged by deintercalation for various [ js , tc] satisfying �qs = js tc/2 = 0.3 C m−2.

models, similar to those described earlier but accounting for the ef-
fects of EDL formation. This approach could enable the simulation of
realistic hybrid pseudocapacitor devices. Such models could identify
operating conditions that maximize the capacitance of existing de-
vices. Note that in all cases, the continuum model is valid for pore or
particle size larger than 5 nm when dielectric and transport properties
can be defined in the framework of continuum theory. For pores or
particles smaller than 1-5 nm, multiscale coupling of the present con-
tinuum model with (i) quantum mechanical models, such as density
functional theory (DFT), and/or (ii) atomistic models, such as MD
simulations, could be formulated for quantitative predictions. How-
ever, this falls outside the scope of the present study.

Conclusions

The present study investigated the electrochemical transport phe-
nomena occurring inside hybrid pseudocapacitors under galvanostatic
cycling using a rigorous physical model accounting for coupled EDL
formation and faradaic reactions. Detailed numerical simulations were
performed for a hybrid pseudocapacitor with planar electrodes un-
der various current densities and cycle periods. First, two asymptotic
regimes were identified: (i) a faradaic regime dominated by redox
reactions at small js and slow charging and (ii) a capacitive regime
dominated by EDL formation under large js and fast charging. In
these regimes, simple analytical expressions were derived for the Li+

concentration intercalated in the pseudocapacitive electrode and for
the surface overpotential as functions of time. The surface overpo-
tential was important in determining whether EDL or faradaic charge

storage dominated. The larger its value at the charging/discharging
transitions, the smaller the faradaic fraction of the charge storage.
Second, the predicted cell potentials resembled those reported exper-
imentally. In particular, characteristic “kinks” occurred immediately
after charging/discharging transitions and were attributed to brief pe-
riods of EDL charge storage as the surface overpotential and ion
concentrations adjusted to the new direction of the current, before the
faradaic charge storage became dominant again. Finally, variation of
the equilibrium potential drop �ψeq with the state of charge negatively
affected the faradaic charge storage and prevented the device from op-
erating in the faradaic regime, even at small current, thus reducing its
capacitance. Overall, this study indicates that accounting for coupling
between EDL formation and faradaic reactions is essential for repro-
ducing and interpreting experimental measurements. The numerical
model and the derived analytical expressions provide useful tools for
optimizing hybrid pseudocapacitor performance by developing design
rules and/or improving the predictions of volume-averaged models.
They can also serve as a foundation for physics-based modeling of
other quantities of interest, such as predicting internal heat generation
rates in order to develop thermal management strategies.
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